Untersuchung eines Alterssimulationsanzugs mittels geriatrischer Bewegungstests und Ganganalyse

Melanie HEUSSNER, Birte LÖFFLER, Ludger SCHMIDT

Universität Kassel, Fachgebiet Mensch-Maschine-Systemtechnik, Mönchebergstraße 7, 34125 Kassel

Kurzfassung: Um ein höheres Alter von Arbeitspersonen bei der Arbeitsgestaltung prospektiv zu berücksichtigen, werden Alterssimulationsanzüge entwickelt. Diese schränken u. a. Mobilität und Beweglichkeit ein. Aktuell sind verschiedene Anzüge auf dem Markt verfügbar. Offen ist häufig, ob diese tatsächlich alterstypisch einschränken. Am Beispiel eines Alterssimulationsanzuges mit flexiblen Gurten werden zwei Testverfahren angewendet. Die Ergebnisse von zwei geriatrischen Tests zeigen, dass die Messgrößen sich beim Tragen des Anzuges signikant verschlechtern. Auch die Ganganalyse eines Probanden legt nahe, dass der Anzug alterstypisch einschränkt, was Schrittlänge und einem weniger dynamischen anhand der Bewegungsverlauf sichtbar ist.

Schlüsselwörter: Alterssimulationsanzug, geriatrische Testverfahren, Ganganalyse, demografischer Wandel, Simulation

1. Einleitung

In vielen industrialisierten Ländern verändert sich die Bevölkerungsstruktur: Die Menschen leben im Durchschnitt länger, weniger Menschen werden neugeboren, sodass der Anteil älterer in der Gesellschaft stetig wächst. Entsprechend bekommt die Anpassung von Produkten, Lebensräumen und Arbeitsplätzen eine immer größere Bedeutung. Um die Wünsche und Bedürfnisse älterer Menschen besser verstehen zu können, werden Alterssimulationsanzüge verwendet, die es dem Träger ermöglichen, alterstypische Einschränkungen des Bewegungsapparats und der Sensorik zu erfahren (Müller 2012).

Mittlerweile gibt es eine Reihe von Herstellern. Die meisten Anzüge werden durch Manschetten und Gewichte ergänzt, sodass die Bewegungen einzelner Körperteile bzw. einzelner Gelenke eingeschränkt und die aufzubringende Kraft erhöht wird. Zusätzlich werden verschiedenen Sinne mit Hilfsmitteln, wie beispielsweise speziellen Brillen, Handschuhen oder Gehörschutz, in ihrer Funktion alterstypisch geschwächt (Limbourg & Stein 2011).

Für die hier vorgestellten Untersuchungen wurde ein Alterssimulationsanzug verwendet, der aus einzelnen Komponenten besteht, die bestimmte Körperbereiche und -funktionen einschränken und in der Summe eine ganzheitliche alterstypische motorische Beeinträchtigung simuliert, die durch Verminderung des Seh-, Hör- und Tastvermögens ergänzt werden können (Abbildung 1). Die einzelnen Komponenten sind aus verstärktem Gewebe, das versteifend auf die Gelenke wirkt und mit Hilfe von Klettverschlüssen befestigt wird. Mit Hilfe von stufenlos verstellbaren Gurten und Gummibändern können Bewegungsradius und -fluss individuell eingeschränkt

werden. Der Kraftaufwand kann somit ohne zusätzliche Gewichte erhöht werden (Ruby & Steltner 2014).

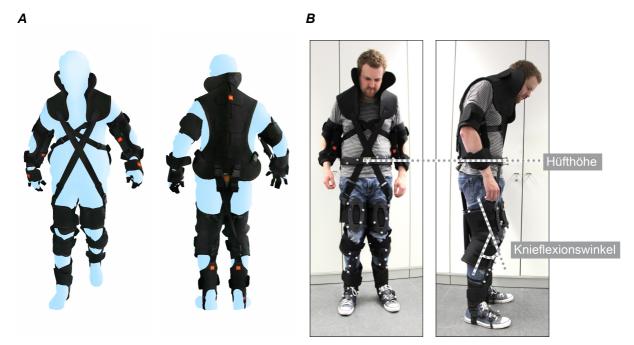


Abbildung 1: Der untersuchte Alterssimulationsanzug besteht aus mehreren Komponenten (Grafik A: Ellert & Mathee 2014), die mit individuell und stufenlos verstellbaren Gurten und Gummibändern verbunden werden. Die Fotos (B) zeigen einen Probanden beim Tragen des Anzuges für die Ganganalyse mit Markern. Die gepunkteten Linien weisen auf die im Ergebnisteil dargestellten Messgrößen hin.

Bisher gibt es keinen wissenschaftlichen Beleg über die Funktionsweise des Anzuges und in wie fern er tatsächlich das Alter simuliert. In diesem Beitrag werden zwei Methoden vorgestellt, die hierfür verwendet werden können.

2. Methode

Um herauszufinden, ob der beschriebene Alterssimulationsanzug dazu geeignet ist, alterungsbedingte Mobilitätseinschränkungen zu simulieren, ist zum einen ein Versuchsablauf entwickelt worden, der mit unterschiedlichen Probanden in verschiedenen Kontexten durchgeführt werden kann, zum anderen wurde anhand eines Probanden eine computergestützte Ganganalyse durchgeführt. Bei bisherigen Forschungsarbeiten zu Alterssimulationsanzügen ist zumeist eine Konzentration auf einen bestimmten Anwendungskontext erfolgt. So wurde bspw. zur Evaluation des Alterssimulationsanzuges "MAX" eine zentrale Studie in einer Testumgebung aus dem Produktionsbereich durchgeführt, um ältere Montagearbeiter zu simulieren (Scherf 2014).

2.1 Mobilitätstests

Zunächst wurden zwei Tests ausgewählt, die üblicherweise innerhalb von geriatrischen Assessments zur Abklärung bestimmter körperlicher Funktionen von Patienten durchgeführt werden. Diese Tests erschienen besonders geeignet, um herauszufinden, ob ein Tragen des Anzuges die durch die Tests feststellbaren

Einschränkungen simulieren kann. Zentrale Auswahlkriterien für die Tests waren Messung von Einschränkungen der Mobilität und eine einfache Durchführbarkeit ohne spezielle Ausbildung, da die Tests in unterschiedlichen Kontexten von verschiedenen Versuchsleitern durchführbar sein sollen. Ausgewählt wurden der "Timed Up and Go"- Test (TUG) und der "Chair-Stand-Up"-Test (Chair). Diese werden vom Kompetenz-Centrum für Geriatrie (2014) als Tests für die Erfassung der Mobilität einer Person eingeordnet. Der TUG-Test erfasst im Schwerpunkt die funktionelle Mobilität einer Person und der Chair-Test stellt die körperliche Leistungsfähigkeit verbunden mit einer Sturzgefährdung fest. Aus der Literatur können Referenzwerte für die Zuordnung zu bestimmten Graden der Einschränkungen entnommen werden.

Die Durchführung der Tests wird durch eine Fragebogenerhebung ergänzt, bei der die Probanden verschiedene demografische Fragen, wie z. B. zu ihrem Alter, ihrer Größe, ihrem Gewicht oder ihrer subjektiv eingeschätzten Sportlichkeit beantworten müssen, um ggf. Zusammenhänge mit den Testergebnissen feststellen zu können.

Zunächst führten alle Probanden in zufälliger Reihenfolge die beiden Mobilitätstests ohne das Tragen des Anzuges aus und direkt danach mit Tragen des Anzuges, wobei jeweils die dafür benötigte Zeit gemessen wurde.

2.2 Ganganalyse

In einer Ganganalyse wird exakt gemessen, wie Personen sich bewegen. Betrachtet werden bestimmte Parameter, wie z. B. Schrittlänge oder –dauer und Gelenkwinkelverläufe. Pathologische Veränderungen sind anhand von Abweichungen erkennbar (Perry 2003).

Um zu analysieren wie der Alterssimulationsanzug die Bewegung einschränkt. wurde der Gang von einem Probanden über eine Strecke von ca. 3,5 m zunächst und dann beim Tragen eines Anzugs betrachtet. ohne Um Bewegungskoordinaten und -winkel mit einem Motion-Tracking-System aufzuzeichnen (ARTTRACK2), trug der Proband optische Marker auf der Oberseite der Füße sowie des Unter- und Oberschenkels und auf Hüfthöhe vor dem Bauch (Abbildung 1).

3. Ergebnisse

Im Folgenden werden die zentralen Ergebnisse aus den Mobilitätstests und der ergänzenden Ganganalyse dargestellt.

3.1 Auswertung der Mobilitätstests

Die vorgestellten Mobilitätstests in Kombination mit der Befragung wurden mit 88 Probanden an drei unterschiedlichen Orten durchgeführt. Von den Probanden mit einem Durchschnittsalter von 30 Jahren (± 14,1 Jahre) waren 42 % männlich und 58 % weiblich. Das relativ geringe Durchschnittsalter erklärt sich dadurch, dass tendenziell eher jüngere Personen auf der öffentlichen Veranstaltung daran interessiert waren, den Anzug auszuprobieren, sowie alle weitere Tests (35,5 %) im universitären Kontext durchgeführt wurden. Der durchschnittliche Body-Mass-Index aller Probanden beträgt 23,3 (± 4), dieser Wert fällt in den Bereich für normalgewichtige Personen. Gefragt nach ihrer subjektiven Sportlichkeit gab ca. die

Hälfte der Probanden (47,7 %) an, "mittelmäßig sportlich" zu sein (36,4 % "eher sportlich" und 15,9 % "eher unsportlich") Hinsichtlich der durchgeführten Mobilitätstests zeigen sich signifikante Unterschiede, wenn die benötigten Zeiten der Probanden ohne Anzug mit den Zeiten mit Tragen des Anzuges verglichen werden (Tabelle 1). Diese Unterschiede sind unabhängig von Alter, Geschlecht, Gewicht, Größe oder der subjektiv eingeschätzten Sportlichkeit. Personen, die ohne Anzug mehr Zeit benötigt haben, haben auch mit Anzug mehr Zeit benötigt. Daraus kann geschlossen werden, dass sich die individuelle Mobilität durch Tragen des Anzuges bei allen Probanden verschlechtert hat. Die Signifikanzen geben Hinweise darauf, dass dieser Effekt sehr wahrscheinlich auch in der Grundgesamtheit zu finden ist.

 Tabelle 1:
 Datenauswertung zu den durchgeführten Mobilitätstests

Mobilitätstest	Mittelwert benötigte Zeit	% der Befragten in den Kategorien ¹	Irrtumswahrscheinlichkeit beim Gruppenvergleich durch t-Test
Chair-Test ohne	10,1 s.	< 12 s.: 78,4 %	
Anzug		> 12 s.: 21,6 %	p ≤ 0,003**
Chair-Test mit	16,1 s.	< 12 s.: 34,1 %	p ≤ 0,003
Anzug		> 12 s.: 65,9 %	
TUG-Test ohne	9,0 s.	< 10 s.: 79,5 %	
Anzug		≥ 10 s. bis < 20 s.: 20,5 %	
		≥ 20 s. bis < 30 s.: 0 %	
		≥ 30 s.: 0 %	n < 0.000***
TUG-Test mit	16,1 s.	< 10 s.: 2,3 %	p ≤ 0,000***
Anzug		≥ 10 s. bis < 20 s.: 83,0 %	
		≥ 20 s. bis < 30 s.: 12,5 %	
		≥ 30 s.: 2,3 %	

¹Erläuterungen zu den Kategorien für die Mobilitätstests:

Chair-Test: > 12 Sekunden - Kraftminderung mit erhöhter Sturzgefahr

TUG-Test: < 10 Sekunden - Alltagsmobilität uneingeschränkt, ≥ 10 bis < 20 Sekunden – geringe

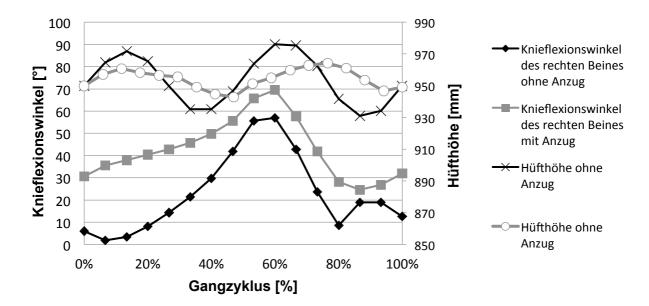
Mobilitätseinschränkung, i.d.R. ohne Alltagsrelevanz, \geq 20 bis < 30 Sekunden – abklärungsbedürftige, funktionell relevante Mobilitätseinschränkung, \geq 30 Sekunden –

ausgeprägte Mobilitätseinschränkung, i.d.R. Interventions-/Hilfsmittelbedarf

Durch die Ergebnisse kann gezeigt werden, dass ein Tragen des Anzuges bei dem Großteil der Probanden zu einer Kraftminderung und zu einer Verschlechterung in der Mobilität führt. Bei den Auswertungen zum TUG wird dies besonders deutlich, da der prozentuale Anteil der Probanden im Vergleich der Testdurchführung ohne Anzug und mit Anzug in der ersten Kategorie (Alltagsmobilität uneingeschränkt) erheblich geringer wird (von 79,5 % zu 2,3 %).

Hinsichtlich der Gurtlängen konnte festgestellt werden, dass alle Gurtlängen signifikant mit der Körpergröße und dem Gewicht zusammenhängen. Für den BMI gilt dies ebenso, außer für die Länge der Beinteile. Bei Personen, die größer und/ oder schwerer waren, wurden die flexiblen Gurte länger eingestellt, als bei kleineren und/ oder leichteren Personen.

3.2 Ganganalyse


Aus den Bewegungskoordinaten und -winkeln wurden die in Tabelle 2 gelisteten Gangparameter und die in Abbildung 2 dargestellten Verläufe der Hüfthöhe und der Knieflexionswinkel über einen exemplarischen Gangzyklus einer Versuchsperson

abgeleitet.

 Tabelle 2:
 Vergleich einiger Gangparameter eines Probanden ohne und mit Alterssimulationsanzug

Gangparameter	Ohne Anzug	Mit Anzug
Distanz	4065 mm	3867 mm
Geschwindigkeit	1016 mm/s	737 mm/s
Anzahl Schritte	6	8
Ø Schrittlänge	677,5 ± 67 mm	483,5 ± 37,5 mm
Ø Schrittdauer	0,67 ± 0,5 s	0,66 ± 0,18 s
Anzahl Gangzyklen	5 (3 li., 2 re.)	7 (4 li., 3 re.)
Ø Gangzykluslänge	1371,51 ± 63 mm	976,90 ± 61 mm
Ø Gangzyklusdauer	1,28 ± 0,13 s	1,30 ± 0,07 s

Die Veränderung der Gangparameter zeigt, dass das Tragen eines Anzuges zu einem alterstypischen Gangbild führt: Typisch ist z. B. die Minimierung der Schrittlängen von durchschnittlich 678 mm hin zu sogenannten "Tippelschritten" mit 484 mm (Paroczai et al. 2006). Auffällig ist dabei, dass die Dauer eines kompletten Gangzyklus mit 1,28 ohne bzw. 1,3 Sekunden mit Anzug fast gleich bleibt. Der Knieflexionswinkel weist mit Anzug eine höhere Amplitude auf, da der Anzug ein Durchstrecken der Knie verhindert (Abbildung 2). Insgesamt ist der Verlauf nicht so dynamisch und federnd wie ohne Anzug. Auch anhand des Verlaufs der Hüfthöhe lässt sich erkennen, dass die Bewegung weniger dynamisch ist: Die Hüfte schwingt beim Tragen des Anzuges weniger auf und ab.

Abbildung 2: Kniewinkelverlauf des rechten Beines und Hüfthöhe einer Versuchsperson über einen Gangzyklus mit und ohne Tragen eines Alterssimulationsanzuges

4. Diskussion und Fazit

Die vorgestellten Ergebnisse der Mobilitätstest zeigen, dass sich mit Tragen des Alterssimulationsanzuges die individuelle Mobilität signifikant verschlechtert. Mit der Methode konnte nachgewiesen werden, dass der Anzug alterungsbedingte

Einschränkungen bezüglich der Mobilität und Sturzgefahr für verschiedene Personen unabhängig von Geschlecht, Alter, Körpergröße, Gewicht oder Sportlichkeit simulieren kann.

Weiterhin konnte in einem ersten Ansatz anhand der Ergebnisse der Ganganalyse gezeigt werden, dass diese Methode für die Untersuchung der Auswirkungen des Tragens eines Alterssimulationsanzuges beim Gehen geeignet ist. Die Methode muss noch verfeinert werden, um weitere Parameter wie den Sprunggelenkwinkel und Bewegungen des Beckens zu erfassen. Hier liegt noch viel Potential, um die Bewegung in ihrer komplexen 3-Dimensionalität darzustellen. Kritisch ist an diesen Stellen die ungenaue Positionierung der Marker beim Tragen des Anzuges: Sie werden stellenweise auf dem Anzug und damit mit einem größeren Offset zum Körper angebracht. Weitere Versuche mit unterschiedlichen Probanden sollten in einem nächsten Schritt durchgeführt werden. Auch könnten die Gurtlängen bei gleichen Probanden variiert werden, um deren Einfluss auf die Bewegung und das Gangbild festzuhalten.

Zukünftig ist geplant, den Alterssimulationsanzug bei wissenschaftlichen Studien einzusetzen, in denen die Mobilität von eingeschränkten Personen eine Rolle spielt, z. B. an Arbeitsplätzen im produzierenden Bereich. Durch den Anzug in Verbindung mit der vorgestellten Methode ist es möglich, vor einer eigentlichen Studie einen Probanden zunächst in einem bestimmten Grad altern zu lassen, indem der Anzug z. B. durch Verstellen der Gurte so eingestellt wird, dass bestimmte Werte bei den Mobilitätstests erreicht werden, die Person also "gealtert" ist und der Parameter Alter bzw. Mobilitätseinschränkung miteinfließt.

Es wurden bewusst körperliche Einschränkungen bezüglich der Mobilität ausgewählt, da diese durch den Anzug sehr gut simuliert werden können. Um ein komplettes Bild von Alter und Alterung zu simulieren, müssten auch sensorische und psychische Aspekte berücksichtigt werden.

5. Literatur

Ellert P, Mathee JB (2014) Durchführung und Auswertung von Bewegungstests mit einem Alterssimulationsanzug. Univ. Kassel: Fachgebiet Mensch-Maschine-Systemtechnik, Seminararbeit.

Kompetenz-Centrum Geriatrie (2014) Assessmentinstrumente in der Geriatrie. Accessed December 03, 2014. http://www.kcgeriatrie.de/assessment_3.htm.

Limbourg M. ; Steins G. (2011) Sozialerziehung in der Schule. Wiesbaden: Verlag für Sozialwissenschaften.

Müller, E (2012) Demographischer Wandel: Herausforderung für die Arbeits- und Betriebsorganisation der Zukunft. Berlin: Gito-Verlag

Paroczai R; Bejek Z; Illyes A; Kocsis L; Kiss RM (2006) Gait parameters of healthy, elderly people. Facta Universitatis: Physical Education and Sport 4 (1): 49 – 58.

Perry J (2003) Ganganalyse. München: Urban & Fischer.

Ruby & Steltner (2014) adit – der junge Alterssimulationsanzug. Accessed December 03, 2014. http://discover-adit.com/.

Scherf, C (2014): Entwicklung, Herstellung und Evaluation des Modularen AlterssimulationsanzugseXtra (MAX). Chemnitz: Universitätsverlag Chemnitz.

Ein Teil der Arbeiten wurde mit Mitteln des Bundesministeriums für Bildung und Forschung unter dem Förderkennzeichen 16SV5765K gefördert.